Artificial channel aided LMMSE estimation for time-frequency selective channels in OFDM context

نویسندگان

  • Vincent Savaux
  • Yves Louët
  • Moïse Djoko-Kouam
  • Alexandre Skrzypczak
چکیده

This paper proposes a linear minimum mean square error-based (LMMSE) channel estimation method, which allows avoiding the necessary knowledge of the channel covariance matrix or its estimation. To do so, a perfectly tunable filter acting like an artificial channel is added at the receiver side. We show that an LMMSE estimation of the sum of this artificial channel and the physical channel only needs the covariance matrix of the artificial channel, and the channel estimation is finally obtained by subtracting the frequency coefficients of the added filter. We call this method artificial channel aided-LMMSE (ACA-LMMSE). Theoretical developments and simulations prove that its performance is close to theoretical LMMSE, and we show that this method reduces the computational complexity, compared to usual LMMSE, due to the covariance matrix used for ACA-LMMSE is computed only once throughout the transmission duration. We put the conditions on the artificial channel parameters to get the expected mask effect. Simulations display the performance of the proposed method, in terms of MMSE and bit error rate (BER). Indeed, the difference of BER between our method and the theoretical LMMSE is less than 2 dB. ∗Corresponding author Email addresses: [email protected] (V. Savaux), [email protected] (Y. Louët), [email protected] (M. Djoko-Kouam), [email protected] (A. Skrzypczak) Phone: +33 299058493; Fax: +33 299058419. Preprint submitted to Signal Processing December 19, 2012

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low-Complexity LMMSE Channel Estimation Method for OFDM-Based Cooperative Diversity Systems with Multiple Amplify-and-Forward Relays

Orthogonal frequency division multiplexing(OFDM-) based amplify-and-forward (AF) cooperative communication is an effective way for single-antenna systems to exploit the spatial diversity gains in frequency-selective fading channels, but the receiver usually requires the knowledge of the channel state information to recover the transmitted signals. In this paper, a training-sequences-aided linea...

متن کامل

Cooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel

In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...

متن کامل

Single-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels

In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...

متن کامل

Proposed Pilot Pattern Methods for Improvement DVB-T System Performance

Recently, orthogonal frequency division multiplexing (OFDM) has been extensively used in communications systems to resist channel impairments in frequency selective channels. OFDM is a multicarrier transmission technology in wireless environment that use a large number of orthogonal subcarriers to transmit information. OFDM is one of the most important blocks in digital video broadcast-terrestr...

متن کامل

A Novel Preamble Design for Channel Estimation in Mimo- Ofdm Systems Resulting in Enhanced Throughput

Multiple Input Multiple Output (MIMO) system combined with orthogonal frequency division multiplexing (OFDM) provides a reliable solution for enhanced data rate next generation wireless systems as MIMO produces additional parallel channels in spatial domain which allows high data rates to be achieved without extra bandwidth and transmitted power. While OFDM provides high bandwidth efficiency an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2013